Bortezomib inhibits STAT5-dependent degradation of LEF-1, inducing granulocytic differentiation in congenital neutropenia CD34(+) cells.
نویسندگان
چکیده
The transcription factor lymphoid enhancer-binding factor 1 (LEF-1), which plays a definitive role in granulocyte colony-stimulating factor (G-CSF) receptor-triggered granulopoiesis, is downregulated in granulocytic progenitors of severe congenital neutropenia (CN) patients. However, the exact mechanism of LEF-1 downregulation is unclear. CN patients are responsive to therapeutically high doses of G-CSF and are at increased risk of developing acute myeloid leukemia. The normal expression of LEF-1 in monocytes and lymphocytes, whose differentiation is unaffected in CN, suggests the presence of a granulopoiesis-specific mechanism downstream of G-CSF receptor signaling that leads to LEF-1 downregulation. Signal transducer and activator of transcription 5 (STAT5) is activated by G-CSF and is hyperactivated in acute myeloid leukemia. Here, we investigated the effects of activated STAT5 on LEF-1 expression and functions in hematopoietic progenitor cells. We demonstrated that constitutively active STAT5a (caSTAT5a) inhibited LEF-1-dependent autoregulation of the LEF-1 gene promoter by binding to the LEF-1 protein, recruiting Nemo-like kinase and the E3 ubiquitin-ligase NARF to LEF-1, leading to LEF-1 ubiquitination and a reduction in LEF-1 protein levels. The proteasome inhibitor bortezomib reversed the defective G-CSF-triggered granulocytic differentiation of CD34(+) cells from CN patients in vitro, an effect that was accompanied by restoration of LEF-1 protein levels and LEF-1 messenger RNA autoregulation. Taken together, our data define a novel mechanism of LEF-1 downregulation in CN patients via enhanced ubiquitination and degradation of LEF-1 protein by hyperactivated STAT5.
منابع مشابه
Bortezomib Induces Granulocytic Differentiation of CD34 Cells from Congenital Neutropenia Patients by Reversing Hyperactivate-STAT5a- Dependent Downregulation of LEF-1
The transcription factor LEF-1 (lymphoid enhancer-binding factor 1), which plays a definitive role in granulocyte colony-stimulating factor receptor (G-CSFR)-triggered granulopoiesis, is downregulated in granulocytic progenitors of severe congenital neutropenia (CN) patients. However, the exact mechanism of LEF-1 downregulation is unclear. CN patients are responsive to therapeutically high dose...
متن کاملNeutrophil elastase is severely down-regulated in severe congenital neutropenia independent of ELA2 or HAX1 mutations but dependent on LEF-1.
Severe congenital neutropenia (CN) is a heterogeneous disorder of myelopoiesis which follows an autosomal dominant or autosomal recessive pattern of inheritance. Genetic analyses indicate mutations in the ELA2 gene in most patients. We have identified LEF-1 as a decisive transcription factor in granulopoiesis controlling proliferation and granulocytic differentiation by direct activation of its...
متن کاملA lack of secretory leukocyte protease inhibitor (SLPI) causes defects in granulocytic differentiation.
We identified diminished levels of the natural inhibitor of neutrophil elastase (NE), secretory leukocyte protease inhibitor (SLPI), in myeloid cells and plasma of patients with severe congenital neutropenia (CN). We further found that downregulation of SLPI in CD34(+) bone marrow (BM) hematopoietic progenitors from healthy individuals resulted in markedly reduced in vitro myeloid differentiati...
متن کاملDifferentiation-Inducing Activity of the Phyto-polyphenols Epigallocatechin-3-gallate and Kaempferol on NB4 Cells
Background and Objective: The rate of survival in acute promyelocytic leukemia (APL) can dramatically improve, if the patients receive all-trans-retinoic acid (ATRA) treatment. However, this drugchr('39')s toxicity is a major problem in APL treatment. Previous researches have demonstrated that phyto-polyphenols such as epigallocatechin gallate (EGCG) and kaempferol cause apoptosis in hematopoie...
متن کاملImpaired granulocytopoiesis in patients with chronic idiopathic neutropenia is associated with increased apoptosis of bone marrow myeloid progenitor cells.
To probe the pathophysiologic mechanisms underlying neutropenia in patients with chronic idiopathic neutropenia (CIN) with hypoplastic and left-shifted granulocytic series in the bone marrow (BM), we have studied granulocytopoiesis in 32 adults with CIN by evaluating the number and survival characteristics of cells in several stages of granulocyte differentiation using flow cytometry and BM cul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 123 16 شماره
صفحات -
تاریخ انتشار 2014